1. Industry
Send to a Friend via Email

Your suggestion is on its way!

An email with a link to:

http://aviation.about.com/od/Glossary/a/The-Adf-Ndb-Navigation-System.htm

was emailed to:

Thanks for sharing About.com with others!

You can opt-out at any time. Please refer to our privacy policy for contact information.

The ADF/NDB Navigation System

By

The ADF/NDB navigation system is one of the oldest air navigation systems still in use today. It works from the most simple radio navigation concept: a ground-based radio transmitter (the NDB) sends an omnidirectional signal that an aircraft loop antenna receives. The result is a cockpit instrument (the ADF) that displays the aircraft position relative to an NDB station, allowing a pilot to "home" to a station or track a course from a station.

ADF Component:
The ADF is the Automatic Direction Finder, and is the cockpit instrument that displays relative direction to the pilot. Automatic direction finder instruments receive low and medium frequency radio waves from ground based stations, including nondirectional beacons, instrument landing system beacons and can even receive commercial radio broadcast stations.

The ADF receives radio signals with two antennas: a loop antenna and a sense antenna. The loop antenna determines the strength of the signal it receives from the ground station to determine the direction of the station, and the sense antenna determines whether the aircraft is moving toward or away from the station.

NDB Component:
NDB stands for nondirectional beacon. A NDB is a ground station that emits a constant signal in every direction, also known as an omnidirectional beacon. An NDB signal operated on a frequency between 190-535 KHz, and does not offer information on the direction of the signal- just the strength of it.

NDB stations are classified in four groups:

  • The compass locator is a low-homing beacon used during approaches close to the beacon itself, and has a range of 15 nautical miles
  • The Medium Homing (MH) category has a range of 25 nautical miles
  • The Homing (H) category has a range of 50 nautical miles
  • The High Homing (HH) category has a range of 75 nautical miles

NDB signals move over the ground, following the curvature of the Earth. Aircraft flying close to the ground and the NDB stations will get a reliable signal, but the signal is still prone to errors.

ADF/NDB Errors:

  • Ionosphere Error: Specifically during periods of sunset and sunrise, the ionosphere reflects NDB signals back to Earth, causing fluctuations in the ADF needle.
  • Electrical Interference: In areas of high electrical activity, such as a thunderstorm, the ADF needle will deflect toward the source of electrical activity, causing erroneous readings.
  • Terrain Errors: Mountains or steep cliffs can cause bending or reflecting of signals. Pilot should disregard erroneous readings in these areas.
  • Bank Error: When an aircraft is in a turn, the loop antenna position is compromised, causing the ADF instrument to be off balance.

Practical Use of the ADF/NDB Navigation:
Pilots have found the ADF/NDB system to be reliable in determining position, but for such a simple instrument, an ADF can be very complicated to use.

To begin, a pilot selects and identifies the appropriate frequency for the NDB station on his ADF selector.

The ADF instrument is typically a fixed-card bearing indicator with an arrow that points in the direction of the beacon. Tracking to an NDB station in an aircraft can be done by "homing," which is simply pointing the aircraft in the direction of the arrow.

With wind conditions at altitudes, the homing method rarely produces a straight-line to the station. Instead, it creates more of an arc pattern, making "homing" a rather inefficient method, especially over long distances.

Instead of homing, pilots are taught to "track" to a station using wind correction angles and relative bearing calculations. If a pilot is headed directly to the station, the arrow will point to the top of the bearing indicator, at 0 degrees. Here's where it gets tricky: While the bearing indicator points to 0 degrees, the aircraft's actual heading will usually be different. A pilot must understand the differences between relative bearing (RB), magnetic bearing (MB) and magnetic heading (MH) in order to properly utilize the ADF system.

In addition to constantly calculating new magnetic headings based on relative and/or magnetic bearing, if we introduce timing into the equation -- in an effort to calculate time en route, for example -- there is even more calculating to accomplish. Here is where many pilots fall behind. Calculating magnetic headings is one thing, but calculating new magnetic headings while accounting for wind, airspeed, and time en route can be a large workload, especially for a beginning pilot.

Because of the workload associated with the ADF/NDB system, many pilots have stopped using it. With new technologies like GPS and WAAS so readily available, the ADF/NDB system is becoming an antiquity. Some have already been decommissioned by the FAA.

  1. About.com
  2. Industry
  3. Aviation & Aerospace
  4. Glossary
  5. Practical Use of ADF/NDB Navigation System

©2014 About.com. All rights reserved.